There are impacts of extraterrestrial bodies on Earth every day. Normally they explode and die away in the Earth's atmosphere. Seldomly it happens that a big object hits Earth like the object 65 million years ago, which probalby contributet to the extinction of the dinosaurs.

Meteoride: A small object that enters Earth's atmosphere.
Meteor: If a meteoride shows a glowing appearence it is called meteor or shooting star.
Meteorite: Hits an extraterrestrial body the Earth's surface it is called a meteorite. It is composed mainly out of water ice, stone and iron or nickel.

Following tasks can be solved with the known formulas of the different forms of energy and the law of conversation of energy.

These formulas are useful: $\quad E_{\mathrm{kin}}=m \cdot v^{2} / 2$ and $E_{\mathrm{pot}}=m \cdot v \cdot h$ just as $\Delta E=m \cdot \Delta T \cdot c$

Tasks

1 Which value has the kinetic energy of a spherical shaped meteorite with a diameter of ten kilometers that proceeds with a speed of about $60 \mathrm{~km} \mathrm{~s}^{-1}$ to the Earth's surface. Inform yourself about the composition of a meteorite and estimate the density of this kind of object.

2 The explosive force of the Hiroshima-bomb had a value of 13.4 kilotons 1 (kt) TNT. One kt TNT ist equivalent to $4.184 \cdot 10^{12} \mathrm{~J}^{2}$. How many Hiroshima-bombs are equivalent to the kinetic energy of the above mentioned meteorite?

3 Asuming the whole amount of the impacting object's energy can be used to lift up rock an soil to a height of ten kilometers. How big is the mass that can be lifted into the air? Calculate the fraction of the meteorite's mass and the lifted mass!

4 If a object falls into the sea a huge amount of vapour is lifted into the atmosphere or the above calculated amount of dust when impacted into solid groud, respectively. Inform yourself about resulting consequencens for wheather and climate features!

5 Logically not one hundred percent of the kinetic energy can be transformed to lift up rock into the atmosphere. The bigger part is tranformed into heat. How many kilograms of iron can be melted with 50 percent of the above calculated kinetic energy (specific heat of iron equals $0.45 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$, to melt iron the temperaure has to raised from about $20^{\circ} \mathrm{C}$ to the melting point of iron). Inform yourself about the melting point of iron!
If the meteorite hits the sea's surface sea-water ist vapourized. How many liters of water can be transformed to vapour by using the whole amount of the meteorite's kinetic energy (room temperatur $20^{\circ} \mathrm{C}$, $\mathrm{c}=4.18 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.

[^0]
[^0]: 1 http://de.wikipedia.org/wiki/TNT-\%C3\%84quivalent
 2 http://de.wikipedia.org/wiki/Little_Boy

